Welcome to mmm-eval¶
A comprehensive evaluation framework for Marketing Mix Modeling (MMM) frameworks.
Quick Start¶
Get started with mmm-eval in just a few steps:
1. Install mmm-eval¶
2. Prepare your data¶
Your data should include: - Date column - Target variable (e.g., sales, conversions) - Media spend columns - Revenue column (for ROI calculations)
Example data structure:
date,sales,revenue,tv_spend,digital_spend
2023-01-01,1000,7000,5000,2000
2023-01-02,1200,8000,5500,2200
3. Create a configuration¶
For PyMC-Marketing:
from pymc_marketing.mmm import MMM, GeometricAdstock, LogisticSaturation
from mmm_eval.configs import PyMCConfig
model = MMM(
date_column="date",
channel_columns=["tv_spend", "digital_spend"],
adstock=GeometricAdstock(l_max=4),
saturation=LogisticSaturation()
)
config = PyMCConfig.from_model_object(
model_object=model,
revenue_column="revenue"
)
4. Run evaluation¶
mmm-eval --input-data-path data.csv --config-path config.json --output-path ./output --framework pymc-marketing
Documentation¶
Getting Started¶
- Installation - Get up and running with mmm-eval in minutes.
- Quick Start - Learn the basics with a hands-on example.
- Configuration - Configure your MMM frameworks.
User Guide¶
- CLI Reference - Learn how to use mmm-eval effectively.
- Data Requirements - Understand data format and requirements.
- Frameworks - Supported MMM frameworks.
- Tests - Available validation tests.
- Metrics - Understanding evaluation metrics.
Examples¶
- Basic Usage - Practical examples and use cases.
Development¶
- Contributing - How to contribute to mmm-eval.
- Setup - Development environment setup.
- Testing - Testing practices and procedures.
Features¶
Multi-Framework Support¶
- PyMC-Marketing: Bayesian MMM framework using PyMC
- Google Meridian: Google's MMM framework
- Extensible: Easy to add new frameworks
Comprehensive Testing¶
- Accuracy Tests: MAPE, RMSE, R-squared metrics
- Cross-Validation: Time series cross-validation
- Refresh Stability: Model stability over time
- Performance Tests: Computational efficiency metrics
Standardized Evaluation¶
- Consistent metrics across frameworks
- Reproducible results
- Industry-standard validation approaches
Quick Navigation¶
Getting Started¶
Get up and running with mmm-eval in minutes.
User Guide¶
Learn how to use mmm-eval effectively.
Examples¶
Practical examples and use cases.
Development¶
Contribute to mmm-eval development.